Due March 24

Work your answers on a separate sheet and then transcribe them neatly to this worksheet. Show your work!

For problems 1 through 5 use repeated applications of the chain rule to find

1.
$$y'$$
 where $y = \sin(\sin(\sin(x)))$

2.
$$f'(x)$$
 where $f(x) = \arctan(\sqrt{x})$.

3.
$$f'(4)$$
 where $f(x) = \arctan(\sqrt{x})$.

4.
$$\frac{da}{db}$$
 where $a = \ln(b^2)$.

5. $\frac{d}{dx} \arcsin(\cos(y))$ assuming y is a function of x. Use trig identities to simplify the derivative.

For problems 6 through 9 Consider the ellipse given by $4x^2 + 9y^2 = 25$.

- **6.** Sketch the tangent line through the point (2,-1).
- 7. Find the slope of the tangent line by solving $4x^2 + 9y^2 = 25$ for y and computing $y' = \frac{dy}{dx}$.

9. Write the equation of the tangent line to
$$4x^2 + 9y^2 = 25$$
 through the point (2,-1)

10. Use a tangent line approximation at 8 to estimate
$$\sqrt{70}$$
.